381 research outputs found

    The stability of a trailing-line vortex in compressible flow

    Get PDF
    We consider the inviscid stability of the Batchelor (1964) vortex in a compressible flow. The problem is tackled numerically and also asymptotically, in the limit of large (aximuthal and streamwise) wavenumbers, together with large Mach numbers. The nature of the solution passes through different regimes as the Mach number increases, relative to the wavenumbers. At very high wavenumbers and Mach numbers, the mode which is present in the incompressible case ceases to be unstable, while new 'center mode' forms, whose stability characteristics, are determined primarily by conditions close to the vortex axis. We find that generally the flow becomes less unstable as the Mach number increases, and that the regime of instability appears generally confined to disturbances in a direction counter to the direction of the rotation of the swirl of the vortex. Throughout the paper, comparison is made between our numerical results and results obtained from the various asymptotic theories

    Analytical modeling of micelle growth. 2. Molecular thermodynamics of mixed aggregates and scission energy in wormlike micelles

    Full text link
    Hypotheses: Quantitative molecular-thermodynamic theory of the growth of giant wormlike micelles in mixed nonionic surfactant solutions can be developed on the basis of a generalized model, which includes the classical phase separation and mass action models as special cases. The generalized model describes spherocylindrical micelles, which are simultaneously multicomponent and polydisperse in size. Theory: The model is based on explicit analytical expressions for the four components of the free energy of mixed nonionic micelles: interfacial-tension, headgroup-steric, chain-conformation components and free energy of mixing. The radii of the cylindrical part and the spherical endcaps, as well as the chemical composition of the endcaps, are determined by minimization of the free energy. Findings: In the case of multicomponent micelles, an additional term appears in the expression for the micelle growth parameter (scission free energy), which takes into account the fact that the micelle endcaps and cylindrical part have different compositions. The model accurately predicts the mean mass aggregation number of wormlike micelles in mixed nonionic surfactant solutions without using any adjustable parameters. The endcaps are enriched in the surfactant with smaller packing parameter that is better accommodated in regions of higher mean surface curvature. The model can be further extended to mixed solutions of nonionic, ionic and zwitterionic surfactants used in personal-care and house-hold detergency

    Fingerprints of changes in annual and seasonal precipitation from CMIP5 models over land and ocean

    Get PDF
    By comparing annual and seasonal changes in precipitation over land and ocean since 1950 simulated by the CMIP5 (Coupled Model Intercomparison Project, phase 5) climate models in which natural and anthropogenic forcings have been included, we find that clear global-scale and regional-scale changes due to human influence are expected to have occurred over both land and ocean. These include moistening over northern high latitude land and ocean throughout all seasons and over the northern subtropical oceans during boreal winter. However we show that this signal of human influence is less distinct when considered over the relatively small area of land for which there are adequate observations to make assessments of multi-decadal scale trends. These results imply that extensive and significant changes in precipitation over the land and ocean may have already happened, even though, inadequacies in observations in some parts of the world make it difficult to identify conclusively such a human fingerprint on the global water cycle. In some regions and seasons, due to aliasing of different kinds of variability as a result of sub sampling by the sparse and changing observational coverage, observed trends appear to have been increased, underscoring the difficulties of interpreting the apparent magnitude of observed changes in precipitation

    Transient climate simulations with the HadGEM1 climate model: Causes of past warming and future climate change

    Get PDF
    The ability of climate models to simulate large-scale temperature changes during the twentieth century when they include both anthropogenic and natural forcings and their inability to account for warming over the last 50 yr when they exclude increasing greenhouse gas concentrations has been used as evidence for an anthropogenic influence on global warming. One criticism of the models used in many of these studies is that they exclude some forcings of potential importance, notably from fossil fuel black carbon, biomass smoke, and land use changes. Herein transient simulations with a new model, the Hadley Centre Global Environmental Model version 1 (HadGEM1), are described, which include these forcings in addition to other anthropogenic and natural forcings, and a fully interactive treatment of atmospheric sulfur and its effects on clouds. These new simulations support previous work by showing that there was a significant anthropogenic influence on near-surface temperature change over the last century. They demonstrate that black carbon and land use changes are relatively unimportant for explaining global mean near-surface temperature changes. The pattern of warming in the troposphere and cooling in the stratosphere that has been observed in radiosonde data since 1958 can only be reproduced when the model includes anthropogenic forcings

    The upper end of climate model temperature projections is inconsistent with past warming

    Get PDF
    Climate models predict a large range of possible future temperatures for a particular scenario of future emissions of greenhouse gases and other anthropogenic forcings of climate. Given that further warming in coming decades could threaten increasing risks of climatic disruption, it is important to determine whether model projections are consistent with temperature changes already observed. This can be achieved by quantifying the extent to which increases in well mixed greenhouse gases and changes in other anthropogenic and natural forcings have already altered temperature patterns around the globe. Here, for the first time, we combine multiple climate models into a single synthesized estimate of future warming rates consistent with past temperature changes. We show that the observed evolution of near-surface temperatures appears to indicate lower ranges (5–95%) for warming (0.35–0.82 K and 0.45–0.93 K by the 2020s (2020–9) relative to 1986–2005 under the RCP4.5 and 8.5 scenarios respectively) than the equivalent ranges projected by the CMIP5 climate models (0.48–1.00 K and 0.51–1.16 K respectively). Our results indicate that for each RCP the upper end of the range of CMIP5 climate model projections is inconsistent with past warming

    A New GTSeq Resource to Facilitate Multijurisdictional Research and Management of Walleye Sander Vitreus

    Get PDF
    Conservation and management professionals often work across jurisdictional boundaries to identify broad ecological patterns. These collaborations help to protect populations whose distributions span political borders. One common limitation to multijurisdictional collaboration is consistency in data recording and reporting. This limitation can impact genetic research, which relies on data about specific markers in an organism\u27s genome. Incomplete overlap of markers between separate studies can prevent direct comparisons of results. Standardized marker panels can reduce the impact of this issue and provide a common starting place for new research. Genotyping-in-thousands (GTSeq) is one approach used to create standardized marker panels for nonmodel organisms. Here, we describe the development, optimization, and early assessments of a new GTSeq panel for use with walleye (Sander vitreus) from the Great Lakes region of North America. High genome-coverage sequencing conducted using RAD capture provided genotypes for thousands of single nucleotide polymorphisms (SNPs). From these markers, SNP and microhaplotype markers were chosen, which were informative for genetic stock identification (GSI) and kinship analysis. The final GTSeq panel contained 500 markers, including 197 microhaplotypes and 303 SNPs. Leave-one-out GSI simulations indicated that GSI accuracy should be greater than 80% in most jurisdictions. The false-positive rates of parent-offspring and full-sibling kinship identification were found to be low. Finally, genotypes could be consistently scored among separate sequencing runs \u3e94% of the time. Results indicate that the GTSeq panel that we developed should perform well for multijurisdictional walleye research throughout the Great Lakes region

    The XMM Cluster Survey: Evidence for energy injection at high redshift from evolution of the X-ray luminosity-temperature relation

    Get PDF
    We measure the evolution of the X-ray luminosity-temperature (L_X-T) relation since z~1.5 using a sample of 211 serendipitously detected galaxy clusters with spectroscopic redshifts drawn from the XMM Cluster Survey first data release (XCS-DR1). This is the first study spanning this redshift range using a single, large, homogeneous cluster sample. Using an orthogonal regression technique, we find no evidence for evolution in the slope or intrinsic scatter of the relation since z~1.5, finding both to be consistent with previous measurements at z~0.1. However, the normalisation is seen to evolve negatively with respect to the self-similar expectation: we find E(z)^{-1} L_X = 10^{44.67 +/- 0.09} (T/5)^{3.04 +/- 0.16} (1+z)^{-1.5 +/- 0.5}, which is within 2 sigma of the zero evolution case. We see milder, but still negative, evolution with respect to self-similar when using a bisector regression technique. We compare our results to numerical simulations, where we fit simulated cluster samples using the same methods used on the XCS data. Our data favour models in which the majority of the excess entropy required to explain the slope of the L_X-T relation is injected at high redshift. Simulations in which AGN feedback is implemented using prescriptions from current semi-analytic galaxy formation models predict positive evolution of the normalisation, and differ from our data at more than 5 sigma. This suggests that more efficient feedback at high redshift may be needed in these models.Comment: Accepted for publication in MNRAS; 12 pages, 6 figures; added references to match published versio

    Interpretation and application of carbon isotope ratios in freshwater diatom silica

    Get PDF
    Carbon incorporated into diatom frustule walls is protected from degradation enabling analysis for carbon isotope composition (δ13Cdiatom). This presents potential for tracing carbon cycles via a single photosynthetic host with well-constrained ecophysiology. Improved understanding of environmental processes controlling carbon delivery and assimilation is essential to interpret changes in freshwater δ13Cdiatom. Here relationships between water chemistry and δ13Cdiatom from contemporary regional data sets are investigated. Modern diatom and water samples were collected from river catchments within England and lake sediments from across Europe. The data suggest dissolved, biogenically produced carbon supplied proportionately to catchment productivity was critical in the rivers and soft water lakes. However, dissolved carbon from calcareous geology overwhelmed the carbon signature in hard water catchments. Both results demonstrate carbon source characteristics were the most important control on δ13Cdiatom, with a greater impact than productivity. Application of these principles was made to a sediment record from Lake Tanganyika. δ13Cdiatom co-varied with δ13Cbulk through the last glacial and Holocene. This suggests carbon supply was again dominant and exceeded authigenic demand. This first systematic evaluation of contemporary δ13Cdiatom controls demonstrates that diatoms have the potential to supply a record of carbon cycling through lake catchments from sediment records over millennial timescales
    • …
    corecore